The Heat of Dilution of Poly(vinyl acetate) in Benzene and Methyl Ethyl Ketone

Akihiro Kagemoto and Ryoichi Fujishiro

Department of Chemistry, Osaka Institute of Technology, Omiyakitano-cho, Asahi-ku, Osaka Department of Chemistry, Faculty of Science, Osaka City University, Sumiyoshi-ku, Osaka

(Received March 15, 1968)

In our previous papers¹⁻⁴⁾ we have measured the heats of dilution of atactic polystyrene,1) cis-polybutadiene,2) poly(ethylene oxide),3) and polymethyl methacrylate49 solutions; derived the interaction parameter between the polymer and solvent, and found that the interaction heat parameter, χ_H , is considerably dependent not only on the concentration of the polymer, but also on its molecular weight. In order to confirm this fact for other polymer solutions, the heats of dilution of poly-(vinyl acetate) (PVAc) with the degrees of polymerization of 480, 1480, and 2450, and also the heat of mixing of the monomer of PVAc, were measured at 25.0±0.01°C using a twin micro-calorimeter, with methyl ethyl ketone (MEK) and benzene as solvents.

The heats of dilution of the polymer solutions were measured over the concentration range from 0.2 to 0.08 in the volume fraction of the polymer, by adding a successive of 10-ml and 30-ml portions of the solvent to a solution of a known concentration. The data obtained are shown in Table 1.

The benzene solution is endothermic, while the MEK solution is exothermic.

As has been shown in previously published paper,1) the heats of dilution, $\Delta \overline{H}_d$, are related to the initial volume fraction of the polymer, ϕ_2 , and the final one, ϕ_2 , as follows:

$$\Delta \overline{H}_d = R T \chi_{\rm H} \phi_2 \phi_2' \Delta n_1 \tag{1}$$

when the interaction heat of parameter, χ_H , is not dependent on the concentration, or

$$\Delta \overline{H}_d / R T \phi_2 \phi_2' \Delta n_1 = \chi_1 + \chi_2 (\phi_2 + \phi_2') / 2 \qquad (2)$$

when the χ_H parameter depends linearly on the concentration, according to the equation that $\chi_{\rm H} = \chi_1 + \chi_2 \phi_2$.

In these equations Δn_1 is the number of moles of the solvent added.

By using the experimental data listed in Table 1 and Eq.(1), the interaction heat parameter, χ_H , has been obtained for each dilution process of each system; these parameters are given in the last column of Table 1.

According to Eq.(1), ΔH_d must vary linearly with $\phi_2\phi_2'\Delta n_1$. However, these plots are not linear, as may be seen in Figs. 1 (a) and (b), indicating that χ_{H} depends on the concentration.

This tendency has been confirmed by plotting the $\Delta \overline{H}_a/\phi_2\phi_2'\Delta n_1$ against the average volume fraction $(\phi_2 + \phi_2')/2$ for each system according to Eq. (2). In order to obtain the accurate values of χ_1 and χ_2 , the least-squares treatment of the data was carried out according to Eq. (2); the results are shown in

In a good solvent the $\chi_{\mathbf{H}}$ parameter is considerably dependent on the concentration, while in the poor solvent, benzene, it is not.

Such a tendency can be explained according to the dilution theory of polymer solutions by Flory,5) and

¹⁾ A. Kagemoto, S. Murakami and R. Fujishiro, This Bulletin, 39, 15 (1966).

²⁾ A. Kagemoto, S. Murakami and R. Fujishiro, ibid., 39, 1814 (1966).

³⁾ A. Kagemoto, S. Murakami and R. Fujishiro, Makromol. Chem., 105, 154 (1967).
4) A. Kagemoto, S. Murakami and R. Fujishiro,

This Bulletin, 40, 11 (1967).

⁵⁾ P. J. Flory, and W. R. Krigbaum, J. Chem. Phys., **18**, 1086 (1950).

Table 1. The heat of dilution of polyvinyl acetate solution at 25°C

I. Polyvinyl acetate - Benzene systems

II. Polyvinyl acetate - Methyl ethyl ketone systems

V cc	ϕ_2	V' cc	$\phi_2{'}$	$arDelta \overline{H}_d$ cal	$\chi_{\mathbf{H}}$	V cc	ϕ_2	V' cc	ϕ_2'	$-\Delta \overline{H}_d$ cal	χн
Monor	mer					Mono	mer				
5	1.000	10	0.500	3.491	0.22	5	1.000	10	0.500	2.443	-0.15
10	0.500	15	0.333	1.301	0.24	10	0.500	15	0.333	0.813	-0.15
15	0.333	20	0.250	0.623	0.23	15	0.333	20	0.250	0.380	-0.14
20	0.250	25	0.200	0.358	0.22	20	0.250	25	0.200	0.212	-0.13
5	1.000	10	0.500	3.420	0.21	5	1.000	10	0.500	2.280	-0.14
10	0.500	15	0.333	1.193	0.22	10	0.500	15	0.333	0.813	-0.15
15	0.333	20	0.250	0.623	0.23	15	0.333	20	0.250	0.380	-0.14
$\overline{P} = 48$	80					$\overline{P} = 48$	30				
10	0.265	20	0.128	0.163	0.074	10	0.256	20	0.128	0.209	-0.09
20	0.128	30	0.088	0.065	0.089	20	0.128	30	0.085	0.060	-0.06
30	0.088	40	0.066	0.034	0.090	30	0.085	40	0.064	0.032	-0.0
20	0.212	30	0.141	0.141	0.072	10	0.205	20	0.104	0.122	-0.08
30	0.141	50	0.085	0.122	0.078	20	0.104	30	0.068	0.044	-0.09
20	0.197	30	0.131	0.138	0.082	30	0.086	50	0.051	0.045	-0.0
30	0.131	40	0.098	0.072	0.086	10	0.167	30	0.055	0.108	-0.0
40	0.098	50	0.078	0.045	0.090	20	0.237	30	0.158	0.244	-0.1
50	0.078	60	0.065	0.025	0.076	30	0.158	40	0.059	0.053	-0.0
						40	0.156	70	0.089	0.239	-0.0
$\bar{P} = 18$	50					10	0.256	30	0.085	0.269	-0.0
10	0.220	20	0.110	0.087	0.055	10	0.256	40	0.064	0.301	-0.0
20	0.110	30	0.110	0.040	0.072	10	0.205	30	0.068	0.166	-0.0
20 30	0.110	40	0.074	0.032	0.072	10	0.205	50	0.051	0.211	-0.0
30 30			0.050	0.034	0.065	10	0.200	00	0.001	*****	
	0.080	50 30	0.065	0.034	0.005	$\overline{P} = 18$	350				
10	0.196	20		0.125	0.073	10	0.210	20	0.105	0.115	-0.06
10 20	0.156		$0.078 \\ 0.052$	0.033	0.058			30	0.103	0.036	-0.0
10	0.078	30 30	0.032	0.127	0.058	20 10	0.105 0.198	20	0.099	0.030	-0.0
	0.220									0.038	-0.0
10	0.156	30	0.052	0.072	0.068	20	0.099	30	0.066		
30	0.105	50	0.063	0.056	0.065	20	0.125	40	0.063	0.077	-0.0
$\bar{2} = 24$	50					10	0.157	20	0.079	0.053	-0.0
						20	0.087	30	0.058	0.021	-0.0
10	0.196	20	0.098	0.053	0.042	10	0.231	20	0.116	0.148	-0.0
20	0.098	30	0.065	0.020	0.048	20	0.116	30	0.077	0.044	-0.0
10	0.092	20	0.046	0.011	0.040	30	0.085	40	0.064	0.025	-0.0
30	0.098	40	0.073	0.023	0.049	10	0.210	30	0.070	0.151	-0.0
10	0.151	20	0.076	0.036	0.048	10	0.198	30	0.066	0.116	-0.0
40	0.062	50	0.050	0.008	0.039	10	0.231	30	0.077	0.192	-0.08
20	0.085	30	0.056	0.014	0.045						
30	0.123	50	0.074	0.059	0.050	$\overline{P} = 24$:50				
20	0.176	30	0.117	0.052	0.039	10	0.156	20	0.078	0.046	-0.05
30	0.117	40	0.088	0.030	0.045	10	0.115	20	0.058	0.024	-0.05
						10	0.186	20	0.093	0.066	-0.06
						20	0.093	30	0.062	0.023	-0.06
						20	0.075	30	0.050	0.014	-0.05
						10	0.135	20	0.068	0.030	-0.09
						30	0.084	40	0.063	0.020	-0.05
						40	0.069	50	0.055	0.012	-0.04
						10	0.109	20	0.055	0.023	-0.06

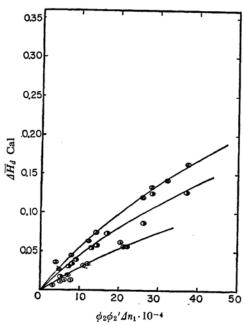


Fig. 1(a). The plot of the heat of dilution, $\Delta \overline{H}_d$, against $\phi_2 \phi_2' \Delta n_1$.

$$\begin{array}{c} Mn \; \left\{ \begin{array}{ccc} 4 \cdot 10^{4} & \textcircled{\triangle} \\ 15 \cdot 10^{4} & \textcircled{\bullet} \\ 20 \cdot 10^{4} & \textcircled{\bullet} \end{array} \right. \\ P.V.Ac.-Benzene \end{array}$$

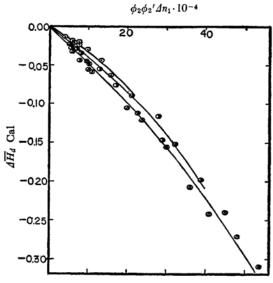


Fig. 1(b). The plot of the heat of dilution, \overline{dH}_d , against $\phi_2\phi_2'\Delta n_1$.

Mn
$$\begin{cases} 4 \cdot 10^{-4} & \textcircled{3} \\ 15 \cdot 10^{-4} & \textcircled{3} \\ 20 \cdot 10^{-4} & \textcircled{6} \end{cases}$$
 P.V.Ac.—M.E.K.

also according to the Huggins⁶⁾ theory. The Huggins theory, however, includes various factors

Table 2. Dependence of the interaction heat parameter on the concentration:

$\chi_{\rm H} = \chi_1 +$	$\chi_2 \phi_2$
---------------------------	-----------------

	χ,	χ_2
PVAc-Benzene		
$\overline{P} = 1$	0.230	
$\overline{P} = 480$	0.095	-0.096
$\overline{P} = 1850$	0.071	-0.047
$\overline{P} = 2450$	0.046	-0.011
PVAc-MEK		
$\overline{P} = 1$	-0.140	
$\overline{P} = 480$	-0.088	-0.10
$\overline{P} = 1850$	-0.059	-0.12
$\overline{P} = 2450$	-0.048	-0.11
$\overline{P} = 3500^{77}$	-0.038	-0.17

P: degree of polymerization.

characteristic of polymer solutions, so our results can not be quantitatively compared with those of this theory because of the lack of information concerning the chain configuration of the polymer molecules in the solution.

Further, the value of χ_1 , which is the interaction heat parameter in the dilute solution, decreases in absolute value as the molecular weight increases, as is shown in the first column in Table 2.

Such a dependence of the χ_1 parameter on the molecular weight has been found for other polymer solutions in previous papers.³⁻⁴

The dependence of the χ_1 parameter on the molecular weight has been theoretically derived by Huggins, who also explained it by using the dilute solution theory of polymers. For example, according to the theory the second virial coefficient can generally be given by the following equation:

$$A_2 = (\bar{u}_2^2/V_1)\phi_1(1-\theta/T)F(X)$$

where F(X) is the complicated function of the molecular weight and the excluded volume (β) ; it decreases as the molecular weight increases.

The approximate treatment of the second virial coefficient gives the apparent interaction parameter, χ_1 , as:

$$\chi_1 = (\phi_1 \theta/T) F(X)$$

which is written as:

$$\chi_1 = \chi_1(X=0)F(X)$$

Since F(X) decreases with an increase in the molecular weight, the apparent interaction parameter, χ_1 , decreases with an increase in the molecular weight of the polymer.

Our results seem to be qualitatively in good agreement with the dilute solution theory of Flory.

⁶⁾ M. L. Huggins, J. Am. Chem. Soc., 86, 3535 (1964).

⁷⁾ J. D. Ferry, J. Chem. Phys., 17 1107 (1949).